SYLLABUS OF A MODULE

Polish name of a module	Komputerowe wspomaganie projektowania	
English name of a module	CAD	
ISCED classification - Code	0715	
ISCED classification - Field of study	Mechanics and metal trades	
Languages of instruction	English	
Level of qualification:	1 – BSc (EQF 6)	
Number of ECTS credit points	6	
Examination:	A – assignment	
Avaliable in semester	А	

Number of hours per semester:

Ī	Lecture	Exercises	Laboratory	Seminar	E-learning	Project
	15		45			

MODULE DESCRIPTION

MODULE OBJECTIVES

- O1. Students obtain knowledge of the construction of any machine parts and mechanisms using CAD applications on the example of the SolidWorks program.
- O2. Acquisition of practical skills by students and preparation for independent geometrical and structural modeling of machine elements and their assemblies in CAD programs on the example of the SolidWorks system.

PRELIMINARY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Basic knowledge of engineering graphics and technical drawing.
- 2. Ability to use various sources of information.
- 3. Ability to work independently and in a group.
- 4. Ability to interpretation and presentation of obtained results.

LEARNING OUTCOMES

- LO 1 Student identifies the possibilities of modeling elements, machine sets and mechanisms in 3D space in CAD programs on the example of the SolidWorks program.
- LO 2 Student is able to create geometrical and structural models along with their parameterization in relation to CAD applications on the example of the SolidWorks program.
- LO 3 Student is able to make a 3D model of a machine element, mechanism and assembly with a complex structure in a CAD program on the example of the SolidWorks system.

MODULE CONTENT

	Number
Type of classes – lecture	of
	hours
Lec 1 - Characteristics of basic issues related to geometrical and	1
structural modeling.	•
Lec 2 - Introduction to SolidWorks. Basics of operation and program	1
infrastructure.	'
Lec 3,4 - Creating, editing and operations on 2D profiles.	2
Lec 5 - Defining geometrical and dimensional constraints in sketches.	1
Lec 6÷9 - Solid modeling. Tools, methods and functions used to create	4
solid models.	7
Lec 10 - Diagnosis of problems, analysis and repair of parts.	1
Lec 11 - Global variables and equations.	1
Lec 12,13- 2D design documentation.	2
Lec 14,15 - Modeling and using assemblies.	2
Sum	15
	Number
Type of classes- laboratory	of
	hours
Lab 1 - Getting to know the basic functions of the SolidWorks program,	3
its interface, model history, and navigating the model space.	

Lab 2 - Creating, editing and operations on 2D profiles.	3
Lab 3 - Completing the task illustrating the creation of profiles using drawing tools and editing tools.	3
Lab 4 - Application of geometric and dimensional constraints and parameterization of profiles.	3
Lab 5 - Completing the task illustrating the creation of parameterized profiles with defined geometric and dimensional constraints.	3
Lab 6 - Connecting profiles with 3D geometry.	3
Lab 7 - The use of reference elements and the use of basic solid modeling commands.	
Lab 8 - Editing, modification and transformation of solids.	3
Lab 9 - Construction of a parameterized solid model.	3
Lab 10,11 - Creating 2D documentation for the solid model.	6
Lab 12÷14 - Positioning and transforming components. Creating a set of elements. Assembly analysis.	9
Lab 15 - Diagnosis of problems, analysis and repair of parts and assemblies.	3
Sum	45

TEACHING TOOLS

- 1. Power Point presentations, lecture notes, sample problems.
- 2. Laboratory tutorials.
- Computer workstations equipped with the SolidWorks program -educational license.
- 4. Models of machine elements and machine assemblies.

WAYS OF ASSESSMENT (F-FORMATIVE, S-SUMMATIVE

- F1. assessment of preparation for laboratory exercises
- **F2.** assessment of the ability to apply the acquired knowledge while doing the exercises
- **F3.** evaluation of reports on the implementation of exercises covered by the curriculum
- F4. assessment of activity during classes

- **S1.** assessment of the ability to solve the problems posed and the manner of presentation obtained results pass mark *
- **S2.** assessment of mastery of the teaching material being the subject of the lecture test

STUDENT'S WORKLOAD

		Average number of			
No.	Forms of activity	hours required for			
		realization of activity			
1	1. Contact hours with teacher				
1.1	Lectures	15			
1.2	Tutorials	0			
1.3	Laboratory	45			
1.4	Seminar	0			
1.5	Project	0			
1.6	Consulting teacher during their duty hours	5			
1.7	Examination	0			
Total number of contact hours with teacher:		65			
2	2. Student's individual work				
2.1	Preparation for tutorials and tests	0			
2.2	Preparation for laboratory exercises, writing	60			
2.2	reports on laboratories	00			
2.3	Preparation of project	0			
2.4	Preparation for final lecture assessment	15			
2.5	Preparation for examination	0			
2.6	Individual study of literature	10			
	Total number of hours of student's individual work:	85			
	Overall student's workload:	150			
Ove	rall number of ECTS credits for the module	6 ECTS			
	ber of ECTS points that student receives in classes	2.4 ECTS			
requ	iring teacher's supervision:				

^{*)} in order to receive a credit for the module, the student is obliged to attain a passing grade in all laboratory classes as well as in achievement tests.

Number of ECTS credits acquired during practical	4.8 ECTS
classes including laboratory exercises and projects:	4.0 LOTS

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

- Dassault Systems SolidWorks Corporation: SOLIDWORKS 2015. Advanced Part Modelling, USA, 2015.
- Dassault Systems SolidWorks Corporation: SOLIDWORKS Education Edition
 2016-2017. Fundamentals of 3D Design and Simulation, USA, 2017.
- 3. Dassault Systems SolidWorks Corporation: SOLIDWORKS Web Help 2020.
- 4. Lombard M.: SolidWorks 2011 Parts Bible, John Wiley & Sons, 2011.
- 5. Lombard M.: SolidWorks Assemblies Bible, John Wiley & Sons, 2011.
- Tran P.: Certified SolidWorks Professional Advanced Preparation Material, SDC Publications; 2017.
- 7. Willis J., Dogra S.: SolidWorks 2019: A Power Guide for Beginners and Intermediate User Paperback, CADArtifex, 2019.
- 8. Zeid I.: Mastering SolidWorks, Pearson Peachpit, 2014.

MODULE COORDINATOR (NAME, SURNAME, E-MAIL ADDRESS)

Dr hab. inż. Dawid Cekus prof. PCz - dawid.cekus@pcz.pl