Name of course				Course code Seme		Semester		
Structural Mechanics II				ISCED: 0732 sprir		spring		
Type of class				Level of studies		БОТО		
Lecture	Classes	Laboratory	Project	Seminar	Exam	BSc programme		ECTS
1	1	-	2	-	E	full-time studies		6
Specia	Speciality Type of subject							
without division			facultative					
1124.				Department of Construction Process Engineering			ring	
Unit:			Room	94	Phone / fax: +48 (34) 325 0904		0904	
Teacher Ma			Maksym G	RZYWI	NSKI, Ph.D.	SKI, Ph.D. maksym.grzywinski@pcz.pl		

I. C	I. CARD OF COURSE				
SUBJ	JECT OBJECTIVES				
01	To understand the concept of static and kinematic indeterminacy (degrees of freedom) of the structures such as trusses, beams, and rigid pin jointed frames.				
O2	Skills of solving systems of statically indeterminate by the Force Method (FM) and the Displacement Method (DM).				
О3	To apply various methods for analyzing the indeterminate structures to evaluate the response of such structures in the form of bending moment, shear force, axial force etc.				

PRER	PREREQUISITE & ADDITIONAL REQUIREMENTS				
R1	Knowledge of Mathematics in the field of mathematical analysis.				
R2	Knowledge of Mechanics and Strength of Material.				
R3	Completed course Structural Mechanics I.				

LEA	RNING OUTCOMES
S1	Knowledge of Structural Mechanics II and the ability to use the conceptual apparatus of mechanics in the formulation of practical engineering construction.
Gen	eral skills
S2	Can use literature sources and other materials relating to the engineering problem to be solved. Can make a classification of buildings, construction of supporting structures.
Bas	ic engineering skills
S3	Able to solve statically indeterminate systems by the Force Method (FM).
S4	Able to solve statically indeterminate systems by the Displacement Method (DM).
Pers	sonal and social competences
S5	Take responsibility for the reliability of working results and their interpretation. Can ability to work on the given task autonomically and cooperate in a team.

CONTENTS OF STUDY				
Type of classes – Lecture		Number of hours		
L01	Type of structures and loads	1		
L02	Degree of indeterminate static systems. Introduction to the Force Method.	1		
L03	The Force Method for trusses. Displacements for statically indeterminate systems.	1		
L04	The Force Method for beams.	1		
L05	Equation of Three Moment (3M) for continuous beams.	2		
L07 The Force Method for plane frame.		2		
L09	Degree of indeterminate kinematic systems (rotations and displacement).	1		

	Introduction to the Displacement Method.	
L10	The equations of transformation and the canonical equations of Displacement Method.	1
L11	Slope-Deflection Method - continuous beams, frames.	2
L13	Moment Distribution Method - continuous beams, frames.	2
L15	Repertory before written exam	1
	Total:	15
	·	
Туре	of classes – Classes	Number of hours
C01	Determination of the degree of static indeterminate systems. Solving beams and frames statically indeterminate using the Force Method of	2
C02	canonical equations, calculation of load displacement unit and the external loads to the core systems.	
C03	Solve statically indeterminate 2D trusses using the Force Method.	1
C04	Solve statically indeterminate beams, and 2D frames using the Force	0
C05	Method.	2
C06 C07	Solving multi-span beams by the equation of Three Moment (3M).	2
C08		_
C09	Test #1 (Force Method)	2
C10	Determination of the degree of kinematic indeterminate systems. Displacement Method.	1
C11	Solving continuous beams and 2D frames of statically indeterminate.	2
C13	Test #2 (Displacement Method)	2
C15	The use of symmetry and asymmetry in the structure calculations.	1
	Total:	15
	·	
Туре	of classes – Project	Number of hours
P01	Application guidelines for the project #1 - statically indeterminate continuous beam .	2
P02	Discussion of the Force Method (FM). Adoption of the basic system, saving the canonical system of equations. Determination of internal forces in beam. Calculation of displacements for the basic system.	2
P03	The solution of the canonical equations. The calculation of the forces in the beam of the real. Execution control calculations by checking the compatibility of deformations.	2
P04	Discussion of the equation Three Moments (3M).	2
P05	Adoption of the basic system. Writing equations and calculating overtime	
P06	bending moments. Plotting the internal forces of the beam statically indeterminate.	4
P07	Comparison of the results of project #1 using the Method of Displacements (DM). Calculation of the actual bending moments in principle of superposition.	2
	Determination of the degree of kinematic indeterminate, the adoption of the	2
P08	basic system, the calculation of the actual displacement of the system. Defense of the project #1 .	2
P08 P09 P10		4

P11	Determination of the actual movements of the canonical system of	4
P12	equations Displacement Method (DM). The calculation of bending moments in principle of superposition.	
P13	P13 Calculation of displacements for the basic frame. The solution of the canonical equations. Comparison of the results with the Force Method (FM).	
P14	Plotting the internal forces statically indeterminate frame using the principle of superposition. Design validation calculations.	2
P15	Defense of the project #2 .	2
	Total:	30

TEAC	TEACHING TOOLS				
1.	1. Lectures with audiovisual aids.				
2.	Exercises using audiovisual means and the blackboard and chalk.				
3.	Author's teaching aids				
4.	Literature.				

METH	METHODS OF ASSESSMENT (F - FORMATIVE, P - SUMMARY)				
F1	Assessment to prepare for classes. Checking presence.				
F2	Staging elements of the projects carried out independently by the student in accordance with the approved schedule				
F3	Evaluation of activity during the course				
P1	Rating colloquia of credits				
P2	Evaluation of the implementation of projects				
P3	Evaluation of practical knowledge in the field of design				
P4	Rating final exam in writing.				

STUDENT'S WORKLOAD					
1	Activity	Averaged workload			
L.p.	Activity	hours [ECTS]			
1.	Classes – lecture.	15			
2.	Contact hours of teacher - related lectures.	5	2		
3.	Preparing for the exam.	5			
4.	Classes – practice.	15			
5.	Contact hours of teacher - related practice.	5	2		
6.	Preparing for finish test.	5			
7.	Classes - project.	30			
8.	Contact hours of teacher - related project.	5	2		
9.	Execution of projects.	5			
	Total:	90	6		

Textb	Textbook				
1.	Hibbeler R.C.: Structural Analysis, 8 edition, Prentice Hall, 2012				
Refer	References				
1.	Bhavikatti S.S.: Structural Analysis-II, 4 edition, Vikas , 2013				
2.	Kassimali A.: Structural Analysis, 6 edition, Cengage, 2020				
3.	Khalfallah S.: Structural Analysis 2. Statically Indeterminate Structures, Wiley, 2018				
4.	Olsson K.G., Dahlblom O.: Structural Mechanics, Wiley, 2016				
5.	Smith P.S.: An Introduction to Structural Mechanics, Palgrave Macmillan, 2001				

MATRIX OF LEARNING OUTCOME CARRYING OUT							
Learning	Reference to	Objectives of Contents of study		Teaching	Methods of		
outcome for the	the effect	the course	Contents of study	tools	assessment		

course	defined for the field of study				
S1	K_W05, K_W06	O1÷O3	L02÷L07, L12, C02÷C06, C08, C09, P01÷P09	1, 2, 3, 4	F1÷F3, P1÷P4
S 2	K_U01, K_U02 K_U22	O1÷O3	C01÷C06, C08÷C13, P01÷P15	1, 2, 3, 4	F1÷F3, P1÷P4
S 3	K_U09	O1, O2	C02÷C06, C08, C09, P01÷P09	1, 2, 3, 4	F1÷F3, P1÷P4
S4	K_U09	O1, O3	C10÷C12, P10÷P14	1, 2, 3, 4	F1÷F3, P1÷P4
S 5	K_K01, K_K02	O1÷O3	C01÷C15, P01÷P15	4	F1÷F3, P1÷P4

II. ME	THODS OF ASSESSMENT – DETAILS					
MARKS	LEARNING OUTCOME					
	S 1					
2 (F)	Student has not a basic knowledge of Structural Mechanics II and did not know how to use the basic conceptual apparatus and a simple construction solves engineering problems with errors.					
3 (E)	Student has a basic knowledge of Structural Mechanics II, and knows how to use the basic conceptual apparatus and can solve simple problems of engineering construction					
4 (C)	Student has a wide knowledge of Structural Mechanics II, knows how to use advanced conceptual apparatus and can perfectly solve simple and complex problems selected engineering construction					
5 (A)	Student has a wide knowledge of Structural Mechanics II, knows how to use advanced conceptual apparatus and perfectly able to solve simple and complex problems of engineering construction					
	S2					
2 (F)	Student can not replace primary literature sources necessary to solve the tasks of Structural Mechanics systems statically indeterminate					
3 (E)	Student is able to briefly mention primary literature sources and can not fully exploit their					
4 (C)	Student knows the primary literature sources and can be used in a range of tasks to be solved					
5 (A)	Student can fluently replaced by reference and can fluently use it in terms of tasks to be solved					
	S3					
2.0 (F)	Student understands what the solution to the problem by Force Method but it can not properly begin the task					
3.0 (E)	Student is able to solve a simple example using the Force Method, but the solution contains errors					
4.0 (C)	Student is able to correctly solve a simple example and selected complex systems					
5.0 (A)	Student is able to correctly solve simple and complex example by the Force Method					
	S 4					
2.0 (F)	Student understands what is the solution of the Displacement Method but it can not properly begin the task					
3.0 (E)	Student is able to solve a simple example using the Displacement Method, but the solution contains errors					
4.0 (C)	Student is able to correctly solve a simple example and selected complex systems					
5.0 (A)	Student is able to correctly solve simple and complex example by the Displacement Method					
	S5					
2.0 (F)	Student is not able to work individually or in a team					
3.0 (E)	Student can work individually with the help of the teacher, teamwork is conflicting and delayed the work team					
4.0 (C)	Student can work individually and in a team, is systematic but not too creative					
5.0 (A)	Student can work individually and in a team. It can be the most appropriate solution to the problem is creative and well organized, able to mitigate conflicts					

III.	OTHER USEFUL INFORMATIONS ABOUT THE SUBJECT
1.	Information, where and how students may acquaint with literature, author's teaching aids and others: according to the type of materials: According to the type of material – in the classroom, in the teacher's office and university or faculty library
2	Information about the place of classes:
۷.	Show-case in the Faculty of Civil Enginering and faculty www page.
2	Information about time of classes (day and hour):
3.	Show-case in the Faculty of Civil Engineering and faculty www page.
4.	Information about consultations (place and hours):
	The timetable posted on the door of Room 75 at the Faculty of Civil Engineering st. Academic 3 (second floor).