SYLLABUS OF A MODULE

Polish name of a module	Komputerowe wspomaganie prac inżynierskich
English name of a module	Computer Aided Engineering
ISCED classification - Code	0715
ISCED classification - Field of study	Mechanics and metal trades
Languages of instruction	English
Level of qualification:	1 – BSc (EQF 6)
Number of ECTS credit points	6
Examination:	A – assignment
Available in semester:	S

Number of hours per semester:

Lecture	Exercises	Laboratory	Seminar	E-learning	Project
15		45			

MODULE DESCRIPTION

MODULE OBJECTIVES

- O1. Expanding knowledge of 3D modeling.
- O2. To acquire capabilities to conduct strength and frequency analyzes using the finite element method in relation to the selected CAE system.

PRELIMINARY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- Fundamentals of mechanics, mechanism and machine theory, strength of materials, vibration theory.
- 2. Ability to read and apply technical drawings.
- 3. Ability to build 3D models in CAD programs.
- 4. Capability of using source literature.
- 5. Capability of individual work and collaboration in a group.
- 6. Data analysis and presentation of results.

LEARNING OUTCOMES

- LO 1 Knowledge on parameterization and optimization of CAD models.
- LO 2 Knowledge on finite element method in relation to the selected CAE system.
- LO 3 Ability to construct the parameterized solid models and to conduct strength and frequency analyzes in selected CAE system.

MODULE CONTENT

	Number
Type of classes – lecture	
	hours
Lec 1÷3 - Parameterization of CAD models. Global variables, equations,	
part configurations, configurations in assemblies.	
Lec 4,5 - Stress and frequency analysis. The analysis process.	2
Lec 6 - Stress and frequency analysis. Modeling and discretization	1
errors. The influence of mesh density.	'
Lec 7 - Stress and frequency analysis. Methods to present FEA results.	1
Lec 8 - Stress and frequency analysis. Mesh controls.	1
Lec 9 - Stress analysis. Stress concentrations.	1
Lec 10÷12- Stress and frequency analysis. Structural analyses of simple assemblies. Computational model of frame.	
Lec 14,15 - Optimization of models by using a design study.	2
Sum	15
	Number
Type of classes– laboratory	of
	hours
Lab 1 - Use global variable. Create equations.	2
Lab 2 - Use configurations to represent different versions of a part within	
a single file. Suppress and unsuppress features.	6
Lab 3 - Change dimension values by configuration. Suppress features by	2
configuration.	4
Lab 4 - Stress analysis. Preprocessing. Meshing. Processing. Post-	2

processing.	
Lab 5÷7 - Stress analysis. Execute a linear static analysis using solid elements.	6
Lab 8 - Frequency analysis. Preprocessing. Meshing. Processing. Post-processing.	2
Lab 9÷11 - Frequency analysis. Execute a frequency analysis using solid elements.	6
Lab 12 - Stress and frequency analyses. The influence of mesh density on results. Employ various methods to present FEA results.	2
Lab 13 - Stress analysis. Use mesh controls. Understand stress concentrations. Extract reaction forces.	2
Lab 14 - Stress analysis. Compatible and incompatible meshes.	2
Lab 15 - Stress and frequency analyses. Contact analysis.	5
Lab 16,17 - Stress analysis. Symmetrical and free self-equilibrated assemblies.	4
Lab 18 - Design study to analyze trends when specific parameters are varied.	2
Lab 19 - Find optimum value of some design parameters.	2
Sum	45

TEACHING TOOLS

- 1. Power Point presentations, lecture notes, sample problems.
- 2. Laboratory tutorials.
- **3. -** Computer workstations equipped with the SolidWorks program -educational license.

WAYS OF ASSESSMENT (F-FORMATIVE, S-SUMMATIVE

- F1. assessment of preparation for laboratory exercises
- **F2.** assessment of the ability to apply the acquired knowledge while doing the exercises
- **F3.** evaluation of reports on the implementation of exercises covered by the curriculum
- F4. assessment of activity during classes

- **S1.** assessment of the ability to solve the problems posed and the manner of presentation obtained results pass mark *
- **S2.** assessment of mastery of the teaching material being the subject of the lecture test

STUDENT'S WORKLOAD

		Average number of		
No.	Forms of activity	hours required for		
		realization of activity		
1	. Contact hours with teacher			
1.1	Lectures	15		
1.2	Tutorials	0		
1.3	Laboratory	45		
1.4	Seminar	0		
1.5	Project	0		
1.6	Consulting teacher during their duty hours	5		
1.7	Examination	0		
Total number of contact hours with teacher:		65		
2	2. Student's individual work			
2.1	Preparation for tutorials and tests	0		
2.2	Preparation for laboratory exercises, writing	60		
2.2	reports on laboratories	00		
2.3	Preparation of project	0		
2.4	Preparation for final lecture assessment	15		
2.5	Preparation for examination	0		
2.6	Individual study of literature	10		
	Total number of hours of student's individual work:	85		
	Overall student's workload:	150		
Ove	rall number of ECTS credits for the module	6 ECTS		
	ber of ECTS points that student receives in classes	2.4 ECTS		
requ	iring teacher's supervision:			

^{*)} in order to receive a credit for the module, the student is obliged to attain a passing grade in all laboratory classes as well as in achievement tests.

Number of ECTS credits acquired during practical	4.8 ECTS
classes including laboratory exercises and projects:	4.0 LO13

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

- 1. Akin J.E.: Finite Element. Analysis Concepts. Via SolidWorks, World Scientific, 2010.
- Dassault Systems SolidWorks Corporation: Introduction to Simulation.
 SOLIDWORKS Simulation, USA, 2017.
- 3. Dassault Systems SolidWorks Corporation: SOLIDWORKS Education Edition 2016-2017. Fundamentals of 3D Design and Simulation, USA, 2017.
- Dassault Systems SolidWorks Corporation: SOLIDWORKS Simulation.
 SOLIDWORKS 2016 Training, USA, 2016.
- 5. Dassault Systems SolidWorks Corporation: SOLIDWORKS Web Help 2020.
- 6. Dechaumphai P., Sucharitpwatskul S.: Finite Element Analysis with SOLIDWORKS Simulation, Alpha Science, 2019.
- 7. Gill P.E.: Practical optimization. Academic Press, New York, 2000.
- 8. Nudehi S.S., Steffen J.R.: Analysis of Machine Elements Using SOLIDWORKS Simulation 2019, SDC Publications, 2019.
- 9. SilvaV. D.: Mechanics and Strength of Materials, 2006.
- Verma G., Weber M.: SolidWorks Simulation 2017 Black Book, CADCAMCAE Works, 2016.
- 11. Woyand H.-B.: FEM mit CATIA V5, J. Schlembach Fachverlag Wilburgstetten, 2009.
- 12. Zeid I.: Mastering SolidWorks, Pearson Peachpit, 2014.

MODULE COORDINATOR (NAME, SURNAME, E-MAIL ADDRESS)

Dr hab. inż. Dawid Cekus prof. PCz - dawid.cekus@pcz.pl