SYLLABUS OF A MODULE

Polish name of a module	Wprowadzenie do metod numerycznych
English name of a module	Introduction To Numerical Methods
ISCED classification - Code	0541
ISCED classification - Field of study	Mathematics
Languages of instruction	English
Level of qualification: 1 – BSc (EQF 6) 2 – MSc (EQF 7) 3 – PhD (EQF 8)	1
Number of ECTS credit points	6
Examination: EO – exam oral EW – exam written A - assignment	A

Number of hours per semester:

Lecture	Exercises	Laboratory	Seminar	E-learning	Project
15 (e-learning)	-	45	-	-	-

MODULE DESCRIPTION

Module objectives

- O1. Making the students familiar with selected elements of numerical methods
- O2. Acquaint students with practical skills to solve and interpret solutions to simple problems in the field of numerical methods

PRELIMINARY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Course of linear algebra.
- 2. Course of the calculus of one variable
- 3. Ability to use different sources of information
- 4. Ability to work independently and in a group

LEARNING OUTCOMES

LO 1 – student will be able to solve simple numerical problems using Maple

MODULE CONTENT

Type of classes – lecture (e-learning)	Number of
	hours
Course introduction. Taylor series. Order of convergence.	2
Maple's floating-point arithmetic.	3
Solving equations and systems of equations.	2
Interpolation.	3
Numerical differentiation and integration	5
Sum	15
	Number
Type of classes– laboratory.	of
	hours
Maple introduction.	6
Errors in floating-point arithmetic.	9
Solving equations and systems of equations by using Maple.	6
Interpolation.	9
Numerical differentiation and integration.	15
Sum	45

TEACHING TOOLS

1. – e-learning lectures
2. – computers with Maple software

WAYS OF ASSESSMENT (F-FORMATIVE, S-SUMMATIVE)

F1 assessment of preparation for laboratory exercises
F2 assessment of activity during classes
F3 assessment of completion of all activities during e-learning lectures
S1. - assessment of the ability to solve the problems posed and the manner of presentation

obtained results

STUDENT'S WORKLOAD

L.p.	Forms of activity	Average number of hours required for realization of activity		
1	1. Contact hours with teacher			
1.1	Lectures (e-learning)	15		
1.2	Tutorials	-		
1.3	Laboratory	45		
1.4	Seminar	-		
1.5	Project	-		
1.6	Consulting teacher during their duty hours	5		
1.7	Examination	-		

	Total number of contact hours with teacher:	65	
2	2. Student's individual work		
2.1	Preparation for e-learning activities	25	
2.2	Preparation for laboratory exercises	20	
2.3	Preparation for laboratory assessments	25	
2.4	Individual study of literature	15	
	Total number of hours of student's individual work:	85	
Overall student's workload:		150	
Overall number of ECTS credits for the module		6 ECTS	
Number of ECTS points that student receives in classes requiring teacher's 1,8 ECTS 1,8 ECTS		1,8 ECTS	
Number of ECTS credits acquired during practical classes including laboratory exercises and projects:		-	

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

1.	Lloyd N. Trefethen and David Bau, Numerical Linear Algebra, SIAM, 1997.
2.	Gregoire Allaire and Sidi Mahmoud Kaber. Numerical linear algebra, volume 55 of Texts in Applied
	Mathematics. Springer, New York, 2008. Translated from the 2002 French original by Karim Trabelsi.
3.	W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical Recipes: The Art of Scientific
	Computing, 3rd Ed. Cambridge University Press, New York, 2007.
4.	Jonathan M. Borwein, Matthew P. Skerritt, An Introduction to Modern Mathematical Computing with
	Maple, Springer Undergraduate Texts in Mathematics and Technology, Springer-Verlag, New York, 2011.
E	W. Changy D. Kingsid Numerical Mathematics and Computing Process/Cales Congage Learning, 2012

5. W. Cheney, D. Kincaid, Numerical Mathematics and Computing, Brooks/Cole: Cengage Learning, 2013.

MODULE COORDINATOR (NAME, SURNAME, E-MAIL ADDRESS)

dr hab. Tomasz Błaszczyk, CUT prof., tomasz.blaszczyk@pcz.pl