| Course unit title: Structure and properties of engineering materials Struktura i właściwości materiałów inżynierskich | | | | | | |---|-------------------------------|---------|--------------------------------------|-----------------------------------|--| | Field of study: Materia | ls (Glass, paper, pla | stic an | id wood) | Course unit code: | | | Type of course unit: obligatory | Level of study: study-I level | | Form of study:
stationary studies | Year: I-III
Semester: I-VI | | | Teaching methods: Lecture, Seminar, Laboratory, Project Tutorials | | | ber of hours/week: , 1, 0, 0 | Number of ECTS credits:
ECTS 6 | | # Course guide ## **I COURSE CARD** #### **COURSE PURPOSES** - C1. This course introduces students in the materials structures and properties in engineering materials - C2. Students will gain an understanding of structures of materials and utility properties materials # INITIAL REQUIREMENT FOR THE KNOWLEDGE, ABILITIES AND OTHER COMPETENCES - 1. Knowledge of the subjects: mathematics, chemistry, and physics - 2. Ability to work independently and in a group. - 3. Ability to use literature and internet resources. #### THE EFFECTS OF EDUCATION - EK 1 Student knows the structures of the materials engineering - EK 2 Student has a working knowledge of structure and properties of materials. - EK 3 Student knows the essential phases of materials. - EK 4 Provides practical experience in laboratory methods and reporting. ## **COURSE CONTENT** | Teaching method – LECTURE | | |---|-----| | W1,2 - Classification and characteristics of new materials. | 4h | | Crystallography | 411 | | W 3,4 – Materials science and engineering is concerned with the | 4h | | relationship between the properties and structure of materials. | 411 | | W 5,6 – Iron-cementite equilibrium diagram. Steel and cast iron | 4h | | structure and propertes | 411 | | W 7 – Heat Treatment of Steel | 2h | | W 8,9– Structure and properties of aluminium, copper, titanium and | 4h | | |---|----|--| | magnesium alloys | | | | W 10,11 - Structure and properties of ceramic materials | | | | W 12 - Structure and properties of polymer materials. | 2h | | | W 13,14 – Structure and properties of composite materials | 4h | | | W 15 – Structure and properties of the materials in modern technologies | 2h | | | Teaching method – Laboratory | | | | L 1,2 - Steel and cast iron structure and propertes | 2h | | | L 3,4 – Heat Treatment of Steel | 2h | | | L 5-8 – Structure and properties of aluminium, copper, titanium and magnesium alloys | 4h | | | L 9,10 - Structure and properties of ceramic materials | | | | L 11- Structure and properties of polymer materials | | | | L12,13 - Structure and properties of composite materials | | | | L14,15 - Structure and properties of the materials in modern technologies | 2h | | | Teaching method – SEMINAR | | | | S 1-5 — Microstructure, properties and possibility of materials application. | 5h | | | S 6-10 – Metal alloys for applications in the energy and aeronautics | | | | S 11-15 Mechanical Properties of Engineering Materials | 5h | | # TEACHNING TOOLS | 1. – Lecture with the use of audiovisual media | |--| | 2. – Tutorials –discussion in group supported by a teacher | | 3. – Laboratory – student examines the structure and properties of the materials | # $WAYS\ OF\ ASSESSMENT\ (\ F-FORMING, P-SUMMARY)$ | F1. – assessment of preparing to tutorials | | | | |---|--|--|--| | F2. – assessment of the skills to use the knowledge during tutorials | | | | | F3. – assessment of the preparation of topic to practical research during laboratory | | | | | F4. – assessment of the student's active involvement during the course | | | | | | | | | | P1. – assessment of knowledge gained during tutorials | | | | | P2. – assessment of the practical skills in materials investigations | | | | # STUDENT WORKLOAD | Form of activity | Average number of hours to complete the activity | |--|--| | Contact hours with the teacher | 30W 15T 15 lab 60 h | | Getting Acquainted with the indicated literature | 30 h | | Preparing to tutorials | | | 20 h | |---|---|---|-------| | Preparing to laboratory | | | 40 h | | Preparing to pass the course | | | 10 h | | Total number of hours | Σ | | 160 h | | TOTAL NUMBER OF ECTS CREDITS FOR THE COURSE | | 6 | ECTS | ### BASIC AND SUPPLEMENTARY LITERATURE - 1. R.W. Cahn, P. Haasen, E.J. Kramer: Materials Science and Technology, VCH, New York, 8,2005.. - 2. J.R. Davies: "Metallurgy, Processing and Properties of Superalloys", Heat Resistant Materials, ASM Specialty Handbook, 1997. - 3. Biomaterials Science, An Introduction to Materials in Medicine, Edited by B.D. Ratner, A.S. Hoffman, F.J. Sckoen, and J.E.L Emons, Academic Press, second edition, 2004 • - 4. Handbook of Materials for Medical Devices, Edited by J. R. Davis, ASM international, 2003 ## LEADING TEACHER (NAME, SURNAME, ADRES E-MAIL) 1. dr hab. inż. Agata Dudek, prof. PCz dudek@wip.pcz.pl ## MATRIX OD REALIZATION OF EFFECTS OF EDUCATION | The effects
of
education | The reference of the effect
to the effects defined for the
entire program | Course
purposes | Course
content | Teachning
tools | Ways of assessment | |--------------------------------|---|--------------------|--------------------------|--------------------|--------------------| | EK1 | K_W06, K_W08, K_W10,
K_W11 | C1, C2 | W 1-15, L1-
15, T1-15 | 1-3 | F1-F4
P1-P2 | | EK2 | K_W16, K_W18, K_U19 | C1,C2 | W 1-15, L1-
15, T1-15 | 1-3 | P1-P2
F1-F4 | | EK3 | K_U22, K_U23, K_U25 | C1, C2 | W 1-15, L1-
15, T1-15 | 1-3 | F1-F4
P1-P2 | | EK4 | K_W19, K_U03, K_U04,
K_U10, K_U18 | C1, C2 | L1-15 | 3 | P2
F3 | # II.ASSESSMENT FORM – DETAILS | | For grade 2 | For grade 3 | For grade 4 | For grade 5 | |--|---|---|---|--| | EK 1 Student knows the structures of the materials engineering | Student does not
know the
structures of the
materials
engineering | Student knows
some the
structures of the
materials
engineering | Student knows
the structures of
the materials
engineering | Student knows in detail the structures of the materials engineering | | EK 2 Student has a working knowledge of properties of materials | Student does not
have a working
knowledge of
properties of
materials | Students will
have a basic
working
knowledge of
properties of
materials | Students will
have a working
knowledge of
properties of
materials | Students will
have excellent
working
knowledge of
properties of
materials | | EK 3 Student knows the essential phases of materials | Student does not
knows the
essential phases
of materials | Student knows
the basic knows
the essential
phases of
materials | Student knows
the essential
phases of
materials | Student knows
the excellent
knows the
essential phases
of materials | | EK 4 Student provides practical experience in laboratory methods and reporting | Student is not able to provide practical experience in laboratory methods and reporting | Student provides
some practical
experience in
laboratory
methods and
reporting | Student provides practical experience in laboratory methods and reporting | Student provides
in detail practical
experience in
laboratory
methods and
reporting | # III. OTHER USEFUL INFORMATION ABOUT THE COURSE (web site WIPiTM PCZ) - 1. Information where presentation of classes, instruction, subjects of laboratory can be found, etc. - 2. Information about the location of the classes, - 3. Information about the date of the course (day of the week/time). - 4. Information about the consultation (time + place).