SYLLABUS OF A MODULE

Polish name of a module	Analiza sygnałów i przetwarzanie danych
English name of a module	Signal analysis and data processing
ISCED classification - Code	0710
ISCED classification - Field of study	Engineering and engineering trades
Languages of instruction	English
Level of qualification:	1
Number of ECTS credit points	6
Examination:	А
Available in semester:	Y

Number of hours per semester:

	Lecture	Exercises	Laboratory	Seminar	E-learning	Project
•	15	0	45	0	0	0

MODULE DESCRIPTION

MODULE OBJECTIVES

- O1. To make students familiar with statistical methods and numerical tools used in signal analysis.
- O2. To provide the general knowledge of measuring techniques applied for diagnostics of dynamic processes

PRELIMINARY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Fundamentals of mathematics, physics and fluid mechanics, statistics and error estimation.
- 2. Ability to work individually and collaborate in a group.
- 3. Data analysis and presentation of results.

LEARNING OUTCOMES

- LO 1 Knowledge of statistical methods in analysis of dynamic processes
- LO 2 Ability to use software tools for signal analysis

MODULE CONTENT

	Number	
Type of classes – lecture	of	
	hours	
Lec 1 - Introduction to the metrology of dynamic processes, basic		
definitions. Dynamic process as a stochastic process. Time history	1	
(signal) as a realisation of a stochastic process. Stationary and ergodic		
processes.		
Lec 2-3 - Signal classification. Statistical moments, stationarity tests.	2	
Averaging rules, estimation and estimator. Probability density function.	2	
Lec 4-5 - Correlation analysis, auto- and cross-correlation functions.		
Properties of correlation functions and their relations with signals'	2	
statistical measures		
Lec 6-7 - Fourier series, spectrum. Fourier integral. Power spectral	2	
density.	2	
Lec 8-9 - Analogue to digital conversion, sampling, Shannon theorem,		
sampling ambiguity, Nyquist condition. Digitization. Pre-processing and	2	
post-processing.		
Lec 10-11 - Discrete (DFT) and fast (FFT) Fourier transforms.	2	
Lec 12-13 - Aliasing. Spectral leakage, smoothing (window) functions.	2	
Lec 14 - Interpolation. Polynomial interpolation. Spline interpolation.	1	
Lec 15 - Approximation. Least-square method. Bad conditioning, non-		
polynomial least-square methods.	1	
Sum	15	
	Number	
Type of classes– laboratory	of	
	hours	
Lab 1-3 - Introduction to LabView environment. Introduction to Octave.	3	
Lab 4-6 - Analogue to digital processing.	3	
Lab 7-9 - Statistical moments. Stationarity tests.	3	

Lab 10-12- Probability density function, its relations to statistical measures of the signal.	3
Lab 13-15- Autocorrelation function.	3
Lab 16-18 - Cross-correlation function.	3
Lab 19-21 - Application of DFT (Discrete Fourier Transform) to frequency analysis of dynamic processes.	3
Lab 22-27 - Spectral leakage and window functions.	6
Lab 28-30 - Signal filtering. Influence of filtering on signal properties and its statistical measures.	3
Lab 31 - 33 - Using the Newton's method to find the roots of an equation.	3
Lab 34 - 36 - Interpolation with polynomials.	3
Lab 37 - 39 - Interpolation with splines.	3
Lab 40 - 45 - Approximation with least-squares method.	6
Sum	45

TEACHING TOOLS

- 1. Lecture with the use of multimedia presentations and online tools
- 2. Computer laboratory
- 3. Licenced software tools
- 4. Instructions to laboratory exercises

WAYS OF ASSESSMENT (F - FORMATIVE, S - SUMMATIVE)

- F1 assessment of preparation for laboratory exercises
- **F2** assessment of the ability to apply the acquired knowledge while doing the exercises
- **F3** evaluation of reports on the implementation of exercises covered by the curriculum
- F4 assessment of activity during classes
- **S1** assessment of the ability to solve the problems posed and the manner of presentation
- obtained results pass mark *
- S2 assessment of mastery of the teaching material being the subject of the lecture
- exam

*) in order to receive a credit for the module, the student is obliged to attain a passing grade in all laboratory classes as well as in achievement tests.

STUDENT'S WORKLOAD

		Average number of		
L.p.	Forms of activity	hours required for		
		realization of activity		
1.	. Contact hours with teacher			
1.1	Lectures	15		
1.2	Tutorials	0		
1.3	Laboratory	45		
1.4	Seminar	0		
1.5	Project	0		
1.6	Examination	0		
Total number of contact hours with teacher:		60		
2. Student's individual work				
2.1	Preparation for tutorials and tests	15		
2.2	Preparation for laboratory exercises, writing	45		
	reports on laboratories	.0		
2.3	Preparation of project	0		
2.4	Preparation for final lecture assessment	20		
2.5	Preparation for examination	0		
2.6	Individual study of literature	10		
	Total number of hours of student's individual work:	90		
Overall student's workload:		150		
Overall number of ECTS credits for the module		6 ECTS		
Num	ber of ECTS points that student receives in classes	2.4 ECTS		
requiring teacher's supervision:				
Number of ECTS credits acquired during practical 4.2 ECTS				
classes including laboratory exercises and projects:				

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

- Newland D.: An Introduction to Random Vibrations, Spectral & Wavelet Analysis, Dover Publications, 2005
- 2. Hlawatsch F., Auger F.: Time-Frequency analysis. John Wiley & Sons, 2013
- 3. Cariolaro G.: Unified Signal Theory, Springer, 2011
- 4. Shiavi R.: Introduction to Applied Statistical Signal Analysis. Elsevier, 2007
- 5. Agilent Technologies: The Fundamentals of Signal Analysis, Application Note 243, 2000

MODULE COORDINATOR (NAME, SURNAME, E-MAIL ADDRESS)

dr inż. Dariusz Asendrych, dariusz.asendrych@pcz.pl