SYLLABUS OF A MODULE

Polish name of a module	Wytrzymałość Materiałów	
English name of a module	Strength of materials	
ISCED classification - Code	0715	
ISCED classification - Field of study	Mechanics and metal trades	
Languages of instruction	English	
Level of qualification:	1 – BSc (EQF 6)	
Number of ECTS credit points	6	
Examination:	A - assignment	
Available in semester:	А	

Number of hours per semester:

Lecture	Tutorials	Laboratory	Seminar	E-learning	Project
15	15	30	0	0	0

MODULE DESCRIPTION

MODULE OBJECTIVES

- O1. Knowledge of basics of strength of materials in terms of classical approach.
- O2. Practical skills in the analysis of the behavior of the body subjected to external forces and performing simple strength calculations.
- O3. Practical skills in determining the mechanical properties of materials.

PRELIMINARY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Knowledge of mathematic and static in mechanics.
- 2. Knowledge of safety rules when using laboratory equipment.
- 3. Ability to perform mathematical activities to solve the assigned tasks.
- 4. Ability to use of different sources of information and technical drawings.

- 5. Ability to work independently and in a group.
- 6. Ability to interpretation and presentation of obtained results.

LEARNING OUTCOMES

- LO1 Theoretical knowledge in terms of simple strength of materials.
- LO2 General knowledge about stress and strain tensor, constitutive relations, plane stress and strain states.
- LO3 Ability to define internal forces in beams and geometrical properties of the cross section of beams.
- LO4 Calculate stress, strain and displacement in bars and beams for usually used cross sections in engineering practice. Use strength hypotheses to determine cross section geometry.
- LO5 Knows the operating principles of selected laboratory equipment in strength of materials laboratory.
- LO6 Determine the measurement method and perform measurements of mechanical properties of materials.
- LO7 Prepare a test report from the laboratory.

MODULE CONTENT

Type of classes – lecture	
Lec 1-2 – Internal forces, internal forces diagrams.	2
Lec 3-4 – Moment of inertia of a plane area, polar moment of inertia, product of inertia, Steiner theorem.	2
Lec 5 – Principal central moments of inertia, central principal axes.	
Lec 6 – Tension and compression, normal stress and strain, stress-strain diagrams, Hooke's Law, Young's modulus.	
Lec 7 – Stress and strain tensor, constitutive relations.	
Lec 8 – Shear stress and strain, pure shear, shear modulus – modulus of rigidity, shear stress in beams.	
Lec 9 – Torsion of round shafts, stress in torsion, relation between Young's and shear modulus, section modulus.	

Lec 10-11 - Stress in pure bending, curvature of beams, combined stress -	2	
bending and tension or compression, normal stress diagrams, axial section		
modulus, eccentric compression or tension.		
Lec 12-13 - Strength hypotheses, maximum shear stress theory, strain energy	2	
of distortion theory.		
Lec 14 – Compound stresses, permissible stress.	1	
Lec 15 – Deformation of beams.	1	
Sum	15	
Towns of alasses distorials	Number	
Type of classes- tutorials	of hours	
Exe 1,2 – Internal forces, internal forces diagrams.	2	
Exe 3-5 – Moment of inertia of a plane area, polar moment of inertia, product	3	
of inertia, Steiner theorem. Principal central moments of inertia, central		
principal axes.		
Exe 6-8 – Stress in pure bending, combined stress – bending and tension or	3	
compression, normal stress diagrams, eccentric compression or tension.		
Exe 9,10 – Shear stress, Żurawski formula.		
Exe 11 – Torsion of round shafts. Torsional moments, shear stress due to		
torsion.		
Exe 12-13 - Compound stress, bending and torsion of round shafts, bending		
and shear in beams.		
Exe 14 – Design criteria.	1	
Exe 15 - Deformation of beams due to bending, Clebsch method.	1	
Sum	15	
Tune of elegans, Joharatary	Number	
Type of classes– laboratory	of hours	
Lab 1-3 - Brinell and Poldi hardness tests.	3	
Lab 4-6 – Rockwell and Vickers hardness tests.	3	
Lab 7-8 – Measurement of impact strength of metals.		
Lab 9-11 – Tension test using Zwick/Roell materials testing machine.		

Sum	30
Abaqus/FEA.	
Lab 21-30 - Computer modelling of deformation and stress in beams using	
Lab 19-20 - Bending test using Zwick/Roell materials testing machine.	
Lab 17-18 – Measurement of deflection in straight beams	
Lab 15-16 – Measurement of stress with bond wire strain gauges.	
Lab 12-14 – Compression test using Zwick/Roell materials testing machine.	

TEACHING TOOLS

- **1 -** lecture with the use of multimedia presentations and computer equipped with the proper software including Abaqus/FEA.
- **2 –** laboratories equipped with measuring apparatus and computer software
- **3 –** Instructions for laboratory classes and templates of test reports

WAYS OF ASSESSMENT (F - FORMATIVE, S - SUMMATIVE

- **F1.** assessment of preparation for laboratory exercises
- **F2.** assessment of the ability to apply the acquired knowledge while doing the exercises
- **F3.** evaluation of reports on the implementation of exercises covered by the curriculum
- **F4.** assessment of activity during classes
- **S1.** assessment of the ability to solve the problems posed and the manner of presentation obtained results pass mark *
- **S2.** assessment of mastery of the teaching material being the subject of the lecture exam

^{*)} in order to receive a credit for the module, the student is obliged to attain a passing grade in all laboratory classes as well as in achievement tests.

STUDENT'S WORKLOAD

L.p.	Forms of activity	Average number of hours required for realization of activity		
1	. Contact hours with teacher			
1.1	Lectures	15		
1.2	Tutorials	15		
1.3	Laboratory	30		
1.4	Seminar	0		
1.5	Project	0		
1.6	Consulting teacher during their duty hours	5		
1.7	Examination	0		
Total number of contact hours with teacher:		65		
2	2. Student's individual work			
2.1	Preparation for tutorials and tests	20		
2.2	Preparation for laboratory exercises, writing reports	30		
0.0	on laboratories			
2.3	Preparation of project	0		
2.4	Preparation for final lecture assessment	15		
2.5	Preparation for examination	0		
2.6	Individual study of literature	20		
	Total number of hours of student's individual work:	85		
	Overall student's workload:	150		
Overall number of ECTS credits for the module		6 ECTS		
Number of ECTS points that student receives in classes requiring teacher's supervision:		2,40 ECTS		
Number of ECTS credits acquired during practical classes including laboratory exercises and projects:		3,20 ECTS		

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

- 1. Blake A.: Handbook of Mechanics, Materials, and Structures, 1985
- 2. Silva V. D.: Mechanics and Strength of Materials, 2006
- 3. Ross Carl T.F., Case J., Chilver A., Strength of materials and Structures, Elsevier, 1999
- 4. Patnaik S., Hopkins D., Strength of Materials, A New Unified Theory for the 21 Century, Elsevier,

2004

- 5. Timoshenko S.: Strength of materials, part I, part II, Van Nostrand Company, Inc. 1956
- 6. Z.Dyląg, A.Jakubowicz, Z.Orłoś: Wytrzymałość materiałów. Tom 1, WNT, W-wa 2003
- 7. Z.Dyląg, A.Jakubowicz, Z.Orłoś: Wytrzymałość materiałów. Tom 2, WNT, W-wa 2003
- 8. M.E.Niezgodziński, T.Niezgodziński, Zadania z wytrzymałości materiałów, WNT, Warszawa, 1997
- 9. M.Banasiak, K.Grossman, M.Trombski, Zbiór zadań z wytrzymałości materiałów, PWN, 1998

MODULE COORDINATOR (NAME, SURNAME, E-MAIL ADDRESS)

Dr hab. inż. Marcin Kubiak, prof. PCz, marcin.kubiak@pcz.pl