Course title:				
Solar energy in power engineering				
Energia słoneczna w energetyce				
Field of study:				
Type of study:	The level of education:	Education profile:		
full-time studies	first-cycle studies	general academic		
Type of subject:	Semester:	Course language:		
Wybierz element.	Wybierz element.	English		
Course type:	Number of hours:	ECTS Credit points:		
lecture, tutorials, laboratory	15L, 15T, 30Lab	7		

SYLLABUS

COURSE CONTENT

Form of classes - lectures	
The Solar Radiation	
Photovoltaic Generator	
Properties of PV Generators in Operation Conditions	
Shading effects on PV cells	
Inverters	
Storage	
Test	1
Form of classes - tutorials	
Calculation of the work of the PV installation – off grid installation	5
Calculation of the work of the PV installation – on grid installation	5
Calculating the distance between rows	
PV installation with self-consumption of energy	
Test	1
Form of classes - laboratories	
Introduction to laboratory exercises, safety rules etc.	2
Physical behaviour of solar cells under varying illuminance and temperature	6
Solar module measurements	8
Application aspects of electrical components for photovoltaic systems	8
Results and processing of the obtained results	4
Defense of studies	2

COURSE STUDY METHODS

1. blackboard
2. multimedia presentation
3. laboratory setup
4. the literature and instructions for laboratory classes

METHODS OF ASSESMENT (F - formative; S - summative)

F1 activity in classes	
F2. - evaluation of work during laboratory exercises	
S1. – test	
S2. - evaluation of the laboratory reports	

STUDENT WORKLOAD

Form of activity	Workload (hours)
Participation in lectures	14 h
Participation in classes	14 h
Laboratory	30 h
Participation in project classes	5 h
Participation in seminar	-
Preparation course on e-learning	-
Test	2 h
Entrance test for laboratory classes	15 h
Project's defence	-
Exam	-
Consultation hours	15 h
DIRECT TEACHING, hours/ ECTS	95 h / 3,8 ECTS
Preparation for tutorials	25 h
Preparation for laboratories	25 h
Preparation for projects	-
Preparation for seminars	-
Preparation for e-learning classes	-
Participation in e-learning classes	-
Working on project	-
Preparation for tests	30 h
Preparation for exam	-
SELF-STUDY, hours/ ECTS	80 h / 3,2 ECTS
TOTAL (hours)	175 ∑
TOTAL ECTS	7 ECTS

PRIMARY AND SUPPLEMENTARY TEXTBOOKS

Advances in Renewable Energies and Power Technologies Volume 1: Solar and Wind	
Energies Edited by Imene Yahyaoui University Carlos III of Madrid, Spain, 2018	
Energy harvesting; Solar, Wind, and Ocean Energy Conversion Systems;	
Alroza Khaligh, Omar G. Onar; Energy, Power Electronics, and Machines Series; AH	
Emadi, Series Editor 2021	
Stefan C.W. Krauter; Generation - Photovoltaic Energy Systems Modeling of Optical and	
Thermal, Solar Electric Power Performance, Electrical Yield, Energy Balance, Effect on	
Reduction of Greenhouse Gas Emissions, Berlin 2006	
Kaolgirou, Soteris; Solar energy engineering: processes and systems; Elsevier, 2009	

Power systems and renewable energy design, operation, and systems analysis; Gary D. Price; Momentum Press, LLC, New York, 2014

SUBJECT COORDINATOR (NAME, SURNAME, E-MAIL ADDRESS)

1. Michał Wichliński, michal.wichlinski@pcz.pl

NAME OF LECTURER (s) (NAME, SURNAME, E-MAIL ADDRESS)

1. Michał Wichliński, michal.wichlinski@pcz.pl