SYLLABUS OF A MODULE

Polish name of a module	Systemy autonomiczne	
English name of a module	Autonomous Systems	
ISCED classification - Code	0613	
ISCED classification - Field of study	Software and applications development and	
	analysis	
Languages of instruction	English	
Level of qualification:	2 - MSc (EQF 7)	
Number of ECTS credit points	4	
Examination:	A-assignment	
Available in semester:	Y – both semesters	

Number of hours per semester:

Lecture	Exercises	Laboratory	Seminar	E-learning	Project
15		45			

MODULE DESCRIPTION

MODULE OBJECTIVES

- O1. To familiarize students with autonomous, agent, and multi-agent systems as well as their equipment.
- O2. Acquiring practical skills in data processing collected from sensors.
- O3. Acquiring practical skills in the field of analysis, construction, and creation of autonomous systems.

PRELIMINARY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Knowledge of the basics of programming.
- 2. Basic knowledge of how neural networks work.
- 3. Basic knowledge of electronics/embedded systems.

- 4. Ability to search and select information, including instructions and technical documentation.
- 5. Correct interpretation and presentation of the student's own activities.

LEARNING OUTCOMES

- LO 1 The student knows the methods of intelligent control of robots and autonomous systems.
- LO 2 The student can design and model intelligent IT systems, considering the principles of collective creation of cooperating system elements.
- LO 3 The student is competent in working independently and in a team, conducting scientific research, and drawing conclusions from conducted exercises.

MODULE CONTENT

	Number
Type of classes – lecture	of
	hours
Lec 1 - Types of sensors: cameras, thermographic cameras, dynamic	1
vision sensors (event camera), LIDAR, LIDAR 3D, IMU	•
Lec 2 - Raw data processing, types of data conditioning filters	
Lec 3 - Data transmission interfaces between microprocessors,	1
automotive data communication buses (especially CAN (FD))	•
Lec 4 - Introduction to ROS (Robot Operating System)	1
Lec 5 - Mobile robots	1
Lec 6 - Types of ML algorithms, deep and convolutional neural networks,	1
impulse neural networks	•
Lec 7 - Python ML frameworks	1
Lec 8 - Interpretation and understanding of images	1
Lec 9 - Intelligent autonomous systems	1
Lec 10 - Programing of autonomous systems	1
Lec 11- Edge AI concept. Edge AI platforms, e.g. CPU (RPI), GPGPU	
(CUDA, NVidia Jetson), ANN coprocessors (Google Coral), neuromorphic	1
circuits	

1	
1	
1	
1	
15	
Number	
of	
hours	
3	
6	
2	
3	
3	
3	
3	
6	
σ	
3	
9	
3	
5	
3	
45	

TEACHING TOOLS

1. Lecture with multimedia presentation
2. Preparation of reports on completed laboratory exercises
3. Instructions for laboratory exercises
4. Laboratory equipped with PC, microcontrollers, sensors

WAYS OF ASSESSMENT (F – FORMATIVE, S – SUMMATIVE

F1. – Assessment of preparation for laboratory exercises

F2. – Assessment of the ability to apply the acquired knowledge during the exercises

F3. – Assessment of reports on the implementation of exercises included in the course guide

F4. – Evaluation of activity during classes

P1. – Assessment of the ability to solve the problems posed and the method of

presenting the obtained results in the form of reports - credit with a grade*

P2. – Assessment of the mastery of the teaching material being the subject of the

lecture – lecture test (or exam)

*) the condition for obtaining credit is to obtain positive grades from all laboratory exercises and to complete the test task.

STUDENT'S WORKLOAD

L.p.	Forms of activity	Average number of hours required for realization of activity			
1.	1. Contact hours with teacher				
1.1	Lectures	15			
1.2	Tutorials	0			
1.3	Laboratory	45			
1.4	Seminar	0			
1.5	Project	0			
1.6	Examination	0			
	Total number of contact hours with teacher:	60			
2.	2. Student's individual work				
2.1	Preparation for tutorials and tests	10			
2.2	Preparation for laboratory exercises, writing reports on laboratories	10			
2.3	Preparation of project	0			
2.4	Preparation for final lecture assessment	10			
2.5	Preparation for examination	0			

2.6 Individual study of literature	10
Total number of hours of student's individual work:	40
Overall student's workload:	100
Overall number of ECTS credits for the module	4 ECTS
Number of ECTS points that student receives in classes requiring teacher's supervision:	2,4 ECTS
Number of ECTS credits acquired during practical classes including laboratory exercises and projects:	2,2 ECTS

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

- Hughes C., Hughes T.:" Robot Programming: A Guide to Controlling Autonomous Robots", Que Publishing; 1 edition (May 22, 2016)
- 2. Lutz M.; 'Programming Python. Powerful Object-Oriented Programming. 4th Edition', O'Reilly Media
- De Gyurky M., Tarbell M.A.: "The Autonomous System: A Foundational Synthesis of the Sciences of the Mind", Wiley

MODULE COORDINATOR (NAME, SURNAME, E-MAIL ADDRESS)

Mariusz Kubanek, mariusz.kubanek@icis.pcz.pl