SYLLABUS OF A MODULE

Polish name of a module	Inteligentne systemy przetwarzania	
	sygnałów	
English name of a module	Intelligent Systems of Signal Processing	
ISCED classification - Code	0619	
ISCED classification - Field of study	Information and Communication	
	Technologies (ICTs), not elsewhere	
	classified	
Languages of instruction	English	
Level of qualification:		
1 – BSc (EQF 6)	2	
2 – MSc (EQF 7)	2	
3 – PhD (EQF 8)		
Number of ECTS credit points	5	
Examination:		
EO – exam oral	EW/	
EW – exam written		
A - assignment		

Number of hours per semester:

Lecture	Exercises	Laboratory	Seminar	E-learning	Project
30 E	-	30	-	-	-

MODULE DESCRIPTION

Module objectives

- O1. Acquainting the student with selected methods of intelligent data processing, especially artificial neural networks.
- O2. Obtaining by the students the skills in practical application of presented methods.
- O3. Obtaining by the students the practical skills in developing solutions to intelligent data processing.

PRELIMINARY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. The basic knowledge in the field of the arithmetic.
- 2. The basic knowledge in the field of programming.
- 3. The skills of working alone and in the group.
- 4. The skills of correct interpretation and presentation of own activity.

LEARNING OUTCOMES

- LO 1 Students will possess a depth theoretical knowledge in the field of the feed forward neural networks and their learning.
- LO 2 Students will possess a basic knowledge in the field of the recurrent neural networks, especially Hopfield's like networks.
- LO 3 Students will possess a basic knowledge in the field of the optimization process with using of Hopfield networks.
- LO 4 Students will possess a basic knowledge in the field of the construction of autoassociative memories with using of discrete Hopfield networks.
- LO 5 Students will possess a basic knowledge in the field of the optimization process with using of evolutionary algorithms.
- LO 6 Students will possess practical skills in developing neural networks and evolutionary programming to processing a data.

		Number
Type of cl	asses – lecture	of
		hours
Lec 1:	Introduction to intelligent computational system	2
Lec 2-3:	Dimensionality reduction methods	4
Lec 4:	Basics of neural networks	2
Lec 5:	Autoencoders	2
Lec 6:	Restricted Boltzmann Machines	2
Lec 7:	Cryptography using artificial intelligence	2
Lec 8:	Pattern recognition	2
Lec 9:	Recurrent neural networks	2

MODULE CONTENT

Lec 10:	Basics of Natural Language Processing	2
Lec 11-13: The seq2seq algorithm and transformer models		6
Lec 14:	Various application of signal processing	2
Lec 15:	Data Stream mining	2
	Sum	30
		Number
Type of classes– laboratory.		of
		hours
Lab 1-2:	Introduction to Python	4
Lab 3:	Introduction to Keras	2
Lab 4-6:	Latent space analysis	6
Lab 7-8:	Restricted Boltzmann Machines	4
Lab 9-10:	Recurrent neural networks	4
Lab 11-14	Natural Language Processing tasks	8
Lab 15:	Summary and final assessment	2
	Sum	30

TEACHING TOOLS

 Lectures using multimedia presentations 	
 blackboard and chalk or whiteboards and pens 	
3 Laboratory guides	
4 reports from laboratory activities	
5. computer stations with software	

WAYS OF ASSESSMENT (F – FORMATIVE, S – SUMMATIVE

F1 assessment of preparation for laboratory exercises
F2 assessment of the ability to apply the acquired knowledge while doing the
exercises
F3 assessment of activity during classes

S1. - assessment of the ability to solve the problems posed and the manner of

presentation

obtained results - pass mark *

S2. - assessment of mastery of the teaching material being the subject of the lecture - exam

*) in order to receive a credit for the module, the student is obliged to attain a passing grade in all laboratory classes as well as in achievement tests.

STUDENT'S WORKLOAD

		Average number of	
L.p.	Forms of activity	hours required for	
		realization of activity	
1.	Contact hours with teacher		
1.1	Lectures	30	
1.2	Tutorials		
1.3	Laboratory	30	
1.4	Seminar		
1.5	Project		
1.6	Consulting teacher during their duty hours		
1.7	Examination		
Total number of contact hours with teacher:		60	
2. Student's individual work			
2.1	Preparation for tutorials and tests		
22	Preparation for laboratory exercises, writing	25	
2.2	reports on laboratories	20	
2.3	Preparation of project		
2.4	Preparation for final lecture assessment		
2.5	Preparation for examination	20	
2.6	Individual study of literature	20	
	Total number of hours of student's individual work:	65	
Overall student's workload:		125	
Overall number of ECTS credits for the module		5 ECTS	
Number of ECTS points that student receives in classes		2.4 ECTS	
requiring teacher's supervision:		2.1 2010	

Number of ECTS credits acquired during practical	
classes including laboratory exercises and projects:	1.2 ECTS

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

1. Simon J.D. Prince, Understanding Deep Learning, The MIT Press, 2023

https://udlbook.github.io/udlbook/

2. Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press, http://www.deeplearningbook.org, 2016

3. Charu C. Aggarwal, Neural Networks and Deep Learning. A Textbook, Springer, 2018

4. Leszek Rutkowski, Computational Intelligence Methods and Techniques,

Springer-Verlag, 2008

3. James P. Coughlih, Robert H. Baran: Neural Computation in Hopfield Networks and Boltzmann Machines, Univ of Delaware Pr 1995

MODULE COORDINATOR (NAME, SURNAME, E-MAIL ADDRESS)

dr hab. Piotr Duda, prof. PCz., piotr.duda@pcz.pl