SYLLABUS OF A MODULE

Polish name of a module	Aerodynamika Środowiska
English name of a module	Environmental aerodynamics
ISCED classification - Code	0715
ISCED classification - Field of study	Mechanics and metal trades
Languages of instruction	English
Level of qualification:	2
Number of ECTS credit points	6
Examination:	A - assignment
Available in semester:	S

Number of hours per semester:

Lecture	Exercises	Laboratory	Seminar	E-learning	Project
30	0	30	0	0	0

MODULE DESCRIPTION

MODULE OBJECTIVES

- O1. Introduce basic knowledge and principles of aerodynamic
- O2. Acquire abilities to perform physical and numerical modelling of the environmental flows

PRELIMINARY REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Fundamentals of physics, thermodynamics and basics of fluid mechanics
- 2. Ability of individual work and collaboration in a group

LEARNING OUTCOMES

- LO 1 Knowledge of the atmospheric boundary layer flow
- LO 2 Knowledge of aerodynamic forces and moments
- LO 3 Knowledge of flow phenomena modeling

LO 4 – Ability to carry out measurement and analysis of results obtained during implementation of laboratory exercises

MODULE CONTENT

	Number
Type of classes – lecture	of
	hours
Lec 1 - Basic tasks of environmental aerodynamics. History of	3
aerodynamics.	3
Lec 2 - Basic aerodynamic principles and equations.	3
Lec 3 - Fundamentals of inviscid, compressible and incompressible flow.	3
Lec 4 - Flow over an airfoil.	3
Lec 5 - Aerodynamic forces and moments.	3
Lec 6 - Similarity theory and model analysis in aerodynamics.	3
Lec 7 - Aerodynamic flight.	3
Lec 8 - Knowledge of the atmospheric boundary layer flow.	3
Lec 9 – Introduction to flow around ground objects.	3
Lec 10 - Basic of wind engineering; Wind turbine aerodynamics	3
Type of classes- laboratory	
Lab 1 - Basic research methods in a wind tunnel	3
Lab 2 - Measurement of aerodynamic characteristics of a cylinder	3
Lab 3 - Measurement of aerodynamic characteristics of an airfoil	3
Lab 4 - Experimental analysis of the angle of attack impact on the	3
aerodynamic characteristics of an aviation profile	
Lab 5 - Computer analysis of the angle of attack impact on the	3
aerodynamic characteristics of an aviation profile	
Lab 6 - Measurement of the aerodynamic drag coefficient Cx using an	3
aerodynamic weight	
Lab 7 - An example of the application of visualization methods in	3
aerodynamics	
Lab 8 - Identification of cylindrical vortex structures	3

Lab 9 - Computer analysis of the flow around ground objects	3
Lab 10 - Computer analysis of the aerodynamic coefficients of ground	3
objects	3

TEACHING TOOLS

- 1. Lecture with Power Point presentations, lecture notes
- 2. Exercise stands equipped with measuring apparatus
- 3. Computer laboratory, flow simulation software

WAYS OF ASSESSMENT (F-FORMATIVE, S-SUMMATIVE

- **F1.** assessment of preparation for laboratory exercises
- **F2.** assessment of the ability to apply the acquired knowledge while doing the exercises
- **F3.** evaluation of reports on the implementation of exercises covered by the curriculum
- F4. assessment of activity during classes
- **S1.** assessment of the ability to solve the problems posed and the manner of presentation

obtained results - pass mark *

S2. - assessment of mastery of the teaching material being the subject of the lecture - exam

STUDENT'S WORKLOAD

L.p.	Forms of activity	Average number of hours required for realization of activity	
1. Contact hours with teacher			
1.1	Lectures	30	
1.2	Tutorials	0	
1.3	Laboratory	30	
1.4	Seminar	0	

^{*)} in order to receive a credit for the module, the student is obliged to attain a passing grade in all laboratory classes as well as in achievement tests.

1.5	Project	0			
1.6	Examination	0			
	Total number of contact hours with teacher:	65			
2.	2. Student's individual work				
2.1	Preparation for tutorials and tests	0			
2.2	Preparation for laboratory exercises, writing	50			
2.2	reports on laboratories	30			
2.3	Preparation of project	0			
2.4	Preparation for final lecture assessment	20			
2.5	Preparation for examination	0			
2.6	Individual study of literature	15			
	Total number of hours of student's individual work: 85				
Overall student's workload: 150					
Overall number of ECTS credits for the module 6 ECTS		6 ECTS			
Number of ECTS points that student receives in classes		2.4 ECTS			
requiring teacher's supervision:					
Number of ECTS credits acquired during practical		2.0 ECTS			
class	classes including laboratory exercises and projects:				

BASIC AND SUPPLEMENTARY RESOURCE MATERIALS

Anderson Jr, J. D. (2010). *Fundamentals of Aerodynamics*. Tata McGraw-Hill Education.

Fernando H.J.S. (ed.): Handbook of Environmental Fluid Dynamics, 2012

Kundu P., Cohen I.: Fluid mechanics. Academic Press, 2010

Imberger J.: Environmental Fluid Dynamics: Flow Processes, Scaling, Equations of Motion, Academic Press Inc , 2006

Bertin, J. J., & Smith, M. L. (2001). *Aerodynamics for Engineers* (Vol. 6). Upper Saddle River, NJ: Prentice Hall.

Katz, J., & Plotkin, A. (2001). *Low-speed Aerodynamics* (Vol. 13). Cambridge University Press.

Anderson Jr, J. D. (2005). Solutions Manual to Accompany Introduction to Flight. Energy, 20(26), 6.

Anderson Jr, J. D. (1999). A history of Aerodynamics: and Its Impact on Flying

Machines (Vol. 8). Cambridge University Press.

MODULE COORDINATOR (NAME, SURNAME, E-MAIL ADDRESS)

dr hab. inż. Renata Gnatowska, prof. PCz, renata.gnatowska@pcz.pl